3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application
نویسندگان
چکیده
Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake shell of Ni(OH)2 can be tuned through adjusting the concentration of ammonia solution. Heterogeneous nucleation and subsequent oriented crystal growth are identified to be the synthesis mechanism affecting the nanostructure of the shell material, which consequently determines the electrochemical performance in both energy storage and charge transfer. Superior capabilities of 264 mAh g(-1) at 1 A g(-1) and 178 mAh g(-1) at 10 A g(-1) are achieved with the core-shell hybrids of the optimized structure. The asymmetric supercapacitor prototype, comprising of TiO2@Ni(OH)2 as the anode and mesoporous carbons (MCs) as the cathode, is shown to exhibit superior electrochemical performance with high energy and power densities. The present work provides a clear illustration of the structure-property relationship in nanocrystal synthesis and offers a potential strategy to enhance the battery type Ni(OH)2 electrode in a hybrid supercapacitor device.
منابع مشابه
Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)₂ core/shell electrodes.
Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a...
متن کاملA new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.
We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integra...
متن کاملIntegrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor
Current solar energy harvest and storage are so far realized by independent technologies (such as solar cell and batteries), by which only a fraction of solar energy is utilized. It is highly desirable to improve the utilization efficiency of solar energy. Here, we construct an integrated photoelectrochemical device with simultaneous supercapacitor and hydrogen evolution functions based on TiO(...
متن کاملCore–shell titanium dioxide /carbon nanofibers decorated nickel nanoparticles as supports for electrocatalytic oxidation of ethanol
Abstract Recently alcohol fuel cells has been increased consideration because of their environmental friendliness, high energy conversion efficiency and low emissions. Many effort have been made to improve the electro-oxidation performance of alcohols such as methanol, ethanol and propanol. In this work, a new method for ethanol oxidation based on core–shell titanium dioxide / carbon nanofib...
متن کاملNiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity
Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because...
متن کامل